NOTE

Errors in the Numerov and Runge-Kutta Methods

We consider the numerical solution of the Schrödinger equation

$$u''(x) = f(x) u(x)$$
 (1)

by the Numerov [1] and Runge-Kutta [2] methods. Blatt [1] has asserted that the Numerov method is clearly superior to the Runge-Kutta method, because of the higher-order truncation error in the Numerov method. (The truncation error in the Numerov method is of order h^6 , where h is the step length.)

The purpose of this note is to point out that this strong conclusion is unjustified, since the cumulative errors in the fourth-order Runge-Kutta method [2] (with truncation errors of order h^5) and the Numerov method are in fact of the same order—in each case the cumulative error at a fixed value of x is of order h^4 .

Consider first the Runge-Kutta method, using the notation

$$u_j = u(x_j), \quad u'_j = u'(x_j).$$

In advancing the solution through a single step, from x_{j-1} to x_j say, the Runge-Kutta method uses u_{j-1} and u'_{j-1} as initial value data, and predicts approximate values of u_j and u'_j . (The considerations here apply equally whether we use the direct Runge-Kutta method for a second-order differential equation, or the method for a pair of first-order differential equations.) Let R_j and S_j be the (truncation) errors in u and u', respectively, incurred in integrating from x_{j-1} to x_j . Then the cumulative error in u after n steps is [3]

$$\begin{aligned} \Delta u(x_n) &= \sum_{j=1}^n \left[\chi'(x_j) \, R_j - \chi(x_j) \, S_j \right] \\ &\approx \frac{1}{h} \int_{x_0}^{x_n} \left[\chi'(x) \, R(x) - \chi(x) \, S(x) \right] dx, \end{aligned}$$
(2)

where $\chi(x)$ is the solution of the (adjoint) equation $\chi'' = f\chi$, subject to $\chi(x_n) = 0$, $\chi'(x_n) = 1$. In the fourth-order Runge-Kutta method [2], the truncation errors R(x) and S(x) are both of order h^5 . It follows immediately from (2) that the cumulative error $\Delta u(x)$ is of order h^4 .

The Numerov method has a different structure, in that first derivatives are not considered, and the initial-value data for the calculation of u_j is provided by u_{j-1} and u_{j-2} . Equation (2) is therefore inapplicable. That the cumulative error is again of order h^4 may, however, be inferred from the fact that the Numerov method is equivalent to a second difference equation, or more directly by reference to a particular example. A convenient example is the differential equation

$$u''(x) = -u(x), \tag{3}$$

with the initial conditions

$$u(0) = 0, \quad u'(0) = 1,$$
 (4)

which has the exact solution $u(x) = \sin x$. With starting values u(0) = 0, $u(h) = \sin h$, the Numerov method yields the result [4]

$$u(x) = \sin h \sin \lambda x / \sin \lambda h$$
,

where

$$\lambda = \frac{1}{h} \cos^{-1} \left(\frac{12 - 5h^2}{12 + h^2} \right)$$
$$= 1 + h^4/480 + \cdots,$$

hence the cumulative error is

$$\Delta u(x) = (h^4/480)(\sin x - x \cos x) + \cdots,$$
 (5)

which is manifestly of order h^4 .

The magnitudes of the errors in the two methods have been explored for the differential equation (3) with initial conditions (4), and the results are shown in Table I, with N denoting the Numerov method, and RK the direct fourth-order Runge-Kutta method for a second-order differential equation. The Numerov errors agree with (5), and the Runge-Kutta errors show approximately the required h^4 dependence. It is seen that the Numerov method is only slightly superior if the same step length is used in both methods. However, the Runge-Kutta method

TABLE I

CUMULATIVE	Errors	MULTIPLIED	BY	10 ⁸
------------	--------	------------	----	-----------------

x	sin x	N $(h = 0.1)$	RK (h = 0.1)	RK $(h = 0.2)$
0.8	0.71735609	3	56	911
1.6	0,99957360	22	53	904
2.4	0.67546318	51	-17	-224
3.2	-0.05837414	65	-103	1649
4.0	-0.75680250	39	-126	2104
4.8	- 0.9961646 1	-29	47	-892

SLOAN

requires values of f(x) in (1) at the half-way points, thus if f(x) requires extensive calculation, or is available only in tabular form, then the reasonable comparison is between Numerov h = 0.1 and Runge-Kutta h = 0.2 results. On that basis, the Numerov method is clearly superior.

The writer is indebted to Professor J. M. Blatt for his encouragement.

References

1. J. M. BLATT, J. Comp. Phys. 1, 382 (1967).

- 2. L. COLLATZ, "The Numerical Treatment of Differential Equations." Springer-Verlag, Berlin (1960).
- 3. Z. KOPAL, "Numerical Analysis," Section IV-M. Chapman and Hall, London (1955).
- 4. Reference [3], Section IV-K.

I. H. SLOAN

Department of Applied Mathematics University of New South Wales Kensington New South Wales Australia

416